Error bounds for nondegenerate monotone linear complementarity problems
نویسندگان
چکیده
منابع مشابه
Error Bounds for R0-Type and Monotone Nonlinear Complementarity Problems
The paper generalizes the Mangasarian-Ren 10] error bounds for linear complementarity problems (LCPs) to nonlinear complementarity problems (NCPs). This is done by extending the concept of R 0-matrix to several R 0-type functions, which include a subset of monotone functions as a special case. Both local and global error bounds are obtained for the R 0-type and some monotone NCPs.
متن کاملComputation of Error Bounds for P-matrix Linear Complementarity Problems
We give new error bounds for the linear complementarity problem where the involved matrix is a P-matrix. Computation of rigorous error bounds can be turned into a P-matrix linear interval system. Moreover, for the involved matrix being an H-matrix with positive diagonals, an error bound can be found by solving a linear system of equations, which is sharper than the Mathias-Pang error bound. Pre...
متن کاملError bounds for symmetric cone complementarity problems
In this paper, we investigate the issue of error bounds for symmetric cone complementarity problems (SCCPs). In particular, we show that the distance between an arbitrary point in Euclidean Jordan algebra and the solution set of the symmetric cone complementarity problem can be bounded above by some merit functions such as FischerBurmeister merit function, the natural residual function and the ...
متن کاملA Homogeneous Model for Monotone Mixed Horizontal Linear Complementarity Problems
We propose a homogeneous model for the class of mixed horizontal linear complementarity problems. The proposed homogeneous model is always solvable and provides the solution of the original problem if it exists, or a certificate of infeasibility otherwise. Our formulation preserves the sparsity of the original formulation and does not reduce to the homogeneous model of the equivalent standard l...
متن کاملA projection algorithm for strictly monotone linear complementarity problems
Complementary problems play a central role in equilibrium finding, physical simulation, and optimization. As a consequence, we are interested in understanding how to solve these problems quickly, and this often involves approximation. In this paper we present a method for approximately solving strictly monotone linear complementarity problems with a Galerkin approximation. We also give bounds f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematical Programming
سال: 1990
ISSN: 0025-5610,1436-4646
DOI: 10.1007/bf01582267